

Welcome to AssimpKit’s documentation!

AssimpKit is an open source library hosted on Github [https://github.com/dmsurti/AssimpKit] that converts 30 3D file
formats using Assimp [https://github.com/assimp/assimp] to Scene Kit [https://developer.apple.com/reference/scenekit] scenes.

The main documentation for this library is split into:

	User Documentation

	Developer Documentation

	Dessert

User Documentation

	AssimpKit at a glance
	Introduction

	Why AssimpKit

	Getting Started
	Requirements

	Installation

	API Overview

	Tutorial
	Load a 3D model

	Load Skeletal Animations

	Serialization and integrating with asset pipeline

	Using .scn archives exported from AssimpKit in your app

	Example Apps
	Build Instructions for the example apps

	About the iOS example app

	About the macOS example app

	FAQ

Developer Documentation

	Installation
	Assimp Dependency

	XCode Project Layout
	Common Code

	Targets

	Example Apps

	Design
	Classes

	Generating the scene kit scene graph

	Pass 1: Generating the graph with geometry

	Pass 2: Generating Skeletal Animations

	Pass 3: Generating native SCNScene instances

	Loading Animations

	Testing

	Contributing

Dessert

	API

	Release Notes
	Version 1.1

	Version 1.0

AssimpKit at a glance

Introduction

AssimpKit is a cross platform library (macOS, iOS) that coverts the files
supported by Assimp [https://github.com/assimp/assimp] to Scene Kit [https://developer.apple.com/reference/scenekit] scenes.

Why AssimpKit

AssimpKit currently supports 29 file formats that allows you to use these files directly in SceneKit without having to convert these to any of the files that SceneKit or Model IO supports thereby saving an extra step in your asset pipeline.

[image: ../_images/kit.png]

File formats supported

Currently AssimpKit supports the following file formats:

*3d, 3ds, ac, b3d, bvh, cob, dae, dxf, ifc, irr, md2, md5mesh, md5anim, m3sd,
nff, obj, off, mesh.xml, ply, q3o, q3s, raw, smd, stl, wrl, xgl, zgl, fbx,
md3*

Getting Started

Requirements

	Xcode 8.0 or later

	ObjC 2.0

	iOS 10.0 or later

	macOS 10.11 or later

Installation

AssimpKit is Carthage [https://github.com/Carthage/Carthage] compatible.

To install with Carthage, follow the instructions on Carthage.

Your application Cartfile should have the following entry for AssimpKit:

github "dmsurti/AssimpKit"

After carthage update, add the appropriate platform framework (iOS, macOS) to your project. The frameworks are placed in iOS and Mac subdirectories under the Carthage/Build directory of your project.

Important Build Setting for iOS applications only

If you are developing an iOS application, set the Enable Bitcode under Build
Settings->Build Options of your target to NO.

API Overview

Table below lists the important clasess in AssimpKit.

	Class/Category

	Description

	SCNScene(AssimpImport)

	The container for all SceneKit content, loaded with assimp.

	SCNNode(AssimpImport)

	The node category to add animation to a node.

You can use the AssimpImport category defined on SCNScene to load
scenes. The post processing steps that the assimp library can apply to the
imported data are listed at AssimpKitPostProcessSteps [https://dmsurti.github.io/AssimpKit/appledocs/html/Constants/AssimpKitPostProcessSteps.html].

The imported SCNAssimpScene [https://dmsurti.github.io/AssimpKit/appledocs/html/Classes/SCNAssimpScene.html] contains a model SCNScene which represents
the 3D model and the skeleton if it contains one, in addition to the array of
animations each represented by an SCNScene object. The SCNAssimpScene [https://dmsurti.github.io/AssimpKit/appledocs/html/Classes/SCNAssimpScene.html]
also contains the key names for the animations which can be used when adding,
removing animations.

The AssimpImport category defined on SCNNode+AssimpImport [https://dmsurti.github.io/AssimpKit/appledocs/html/Categories/SCNNode+AssimpImport.html] also contain a
method to add a skeltal animation.

For more information, refer to the Tutorial.

Tutorial

Install the AssimpKit.framework following the Installation guide.

It is recommended to go through the API Overview, before working
through the tutorial.

Load a 3D model

Load a Scene which is a part of your app bundle

You can load a scene which is a part of your app bundle, as in Listing I-1 below.

Listing I-1: Load a scene which is part of your app bundle:

#import <AssimpKit/PostProcessing.h>
#import <AssimpKit/SCNScene+AssimpImport.h>

NSString *spider = @"spider.obj";

// Start the import on the given file with some example postprocessing
// Usually - if speed is not the most important aspect for you - you'll
// probably request more postprocessing than we do in this example.
SCNAssimpScene* scene =
 [SCNScene sceneNamed:spider
 postProcessFlags:AssimpKit_Process_FlipUVs |
 AssimpKit_Process_Triangulate]];

// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;

// set the model scene to the view
scnView.scene = scene.modelScene;

Load a scene by specifying a file URL

You can load a scene by specifying a file URL, as in Listing I-2 below.

Listing I-2: Load a scene with a file URL:

#import <AssimpKit/PostProcessing.h>
#import <AssimpKit/SCNScene+AssimpImport.h>

// The path to the file path must not be a relative path
NSString *soldierPath = @"/assets/apple/attack.dae";

// Start the import on the given file with some example postprocessing
// Usually - if speed is not the most important aspect for you - you'll
// probably request more postprocessing than we do in this example.
SCNAssimpScene *scene =
 [SCNScene assimpSceneWithURL:[NSURL URLWithString:soldierPath]
 postProcessFlags:AssimpKit_Process_FlipUVs |
 AssimpKit_Process_Triangulate]];

// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;

// set the model scene to the view
scnView.scene = scene.modelScene;

Load Skeletal Animations

AssimpKit builds on top of the skeletal animation support provided by SceneKit.
For any scene that contains skeletal animation data, it creates a skinner and
sets it to the node whose geometry the skinner deforms. The animated scene after
importing will contain a set of animations each with a unique animation key. You
only have to add the animation to the scene to play it.

AssimpKit supports skeletal animations irrespective of whether they are defined
in one animation file or multiple animation files.

AssimpKit supports CAMediaTiming, animation attributes and animating scene kit
content with an SCNAssimpAnimSettings class which you can (optionally) pass when
adding an animation. You can set animation events and a delegate as well.

Load an animation which is defined in the same file

You can load an animation which is defined in the same file as the model you are
animating, using the listing I-3 below.

Listing I-3: Load and play an animation which is defined in the same file:

#import <AssimpKit/PostProcessing.h>
#import <AssimpKit/SCNScene+AssimpImport.h>
#import <AssimpKit/SCNAssimpAnimSettings.h>

// The path to the file path must not be a relative path
NSString *boyPath = @"/of/assets/astroBoy_walk.dae";

// Start the import on the given file with some example postprocessing
// Usually - if speed is not the most important aspect for you - you'll
// probably request more postprocessing than we do in this example.
SCNAssimpScene *scene =
 [SCNScene assimpSceneWithURL:[NSURL URLWithString:boyPath];
 postProcessFlags:AssimpKit_Process_FlipUVs |
 AssimpKit_Process_Triangulate]];

// add the walk animation to the boy model scene
// add an animation event as well as a delegate
SCNAssimpAnimSettings *settings =
 [[SCNAssimpAnimSettings alloc] init];
settings.repeatCount = 3;

NSString *key = [scene.animationKeys objectAtIndex:0];
SCNAnimationEventBlock eventBlock =
 ^(CAAnimation *animation, id animatedObject,
 BOOL playingBackward) {
 NSLog(@" Animation Event triggered ");
 // You can remove the animation
 // [scene.rootNode removeAnimationSceneForKey:key];
 };
SCNAnimationEvent *animEvent =
 [SCNAnimationEvent animationEventWithKeyTime:0.9f
 block:eventBlock];
NSArray *animEvents =
 [[NSArray alloc] initWithObjects:animEvent, nil];
settings.animationEvents = animEvents;

settings.delegate = self;

// get the animation which is defined in the same file
SCNScene *animation = [animScene animationSceneForKey:key];
[scene.modelScene.rootNode addAnimationScene:animation
 forKey:key
 withSettings:settings];

// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;

// set the model scene to the view
scnView.scene = scene.modelScene;

Load an animation which is defined in a separate file

You can load an animation which is defined in a separate file from the model you
are animating, using the listing I-5 below.

Listing I-4: Load and play an animation which is defined in a separate file:

#import <AssimpKit/PostProcessing.h>
#import <AssimpKit/SCNScene+AssimpImport.h>

// The path to the file path must not be a relative path
NSString *explorer = @"/assets/apple/explorer_skinned.dae";

// Start the import on the given file with some example postprocessing
// Usually - if speed is not the most important aspect for you - you'll
// probably request more postprocessing than we do in this example.
SCNAssimpScene *scene =
 [SCNScene assimpSceneWithURL:[NSURL URLWithString:explorer]
 postProcessFlags:AssimpKit_Process_FlipUVs |
 AssimpKit_Process_Triangulate];

// load an animation which is defined in a separate file
NSString *jumpAnim = @"/explorer/jump_start.dae"];
SCNAssimpScene *jumpStartScene =
 [SCNAssimpScene assimpSceneWithURL:[NSURL URLWithString:jumpAnim]
 postProcessFlags:AssimpKit_Process_FlipUVs |
 AssimpKit_Process_Triangulate];

// get the aniamtion with animation key
NSString *jumpId = @"jump_start-1";
SCNScene *jumpStartAnim = [jumpStartScene animationSceneForKey:jumpId];

// add the jump animation to the explorer scene
// use the default settings, for custom settings see previous listing I-4
[scene.modelScene.rootNode addAnimation:jumpStartAnim
 forKey:jumpId
 withSettings:nil];

// retrieve the SCNView
SCNView *scnView = (SCNView *)self.view;

// set the model scene to the view
scnView.scene = scene.modelScene;

Managing Animations

The SCNNode+AssimpImport category simulates the SCNAnimatable protocol and
provides methods to attach, remove, pause and resume animations.

Serialization and integrating with asset pipeline

You can serialize the model and animation scenes in SCNAssimpScene using the
write [https://developer.apple.com/reference/scenekit/scnscene/1523577-write] defined in SCNScene [https://developer.apple.com/reference/scenekit/scnscene] to export to either .scn or .dae file. See
the discussion section of write [https://developer.apple.com/reference/scenekit/scnscene/1523577-write] for more details.

By exporting using the above serialization method, you can both edit the
exported assets in XCode’s scene editor and also integrate the assets imported
into your application’s asset pipeline.

[image: ../_images/kit.png]

Using .scn archives exported from AssimpKit in your app

Assuming you have two files in the Quake .md5 format, Bob.md5mesh which
contains the 3D model data and Bob.md5anim which contains a skeletal
animation. Using the API as explained above, you can load both the model
SCNScene and animation SCNScene and then export these to the native
.scn archive format.

Assume Bob.md5mesh is exported to Bob.scn and Bob.md5anim is
exported to Bob-1.scn, then in some iOS/macOS app,
you can load these and play the animation as such.:

#import <AssimpKit/SCNScene+AssimpImport.h>
#import <AssimpKit/SCNAssimpAnimSettings.h>

SCNScene *scene = [SCNScene sceneNamed:@"art.scnassets/Bob.scn"];
SCNScene *animScene = [SCNScene sceneNamed:@"art.scnassets/Bob-1.scn"];

SCNAssimpAnimSettings * settings = [[SCNAssimpAnimSettings alloc] init];
settings.repeatCount = 3;
[scene.rootNode addAnimationScene:animScene
 forKey:@"Bob-1"
 withSettings:settings];

You can see below the Bob.scn file edited in XCode Scene editor.

[image: ../_images/bob-XCode.png]
The edited Bob.scn with animation rendered.

[image: ../_images/bob-iOS.png]

Example Apps

The library source code on GitHub repo [https://github.com/dmsurti/AssimpKit] ships with two example apps, for iOS and macOS platforms, which demonstrate the use of this API.

Build Instructions for the example apps

	Checkout the source code from GitHub repo [https://github.com/dmsurti/AssimpKit].

	Open the iOS-Example.xcodeproj for the iOS example app.

	Open the OSX-Example.xcodeproj for the macOS example app.

	Clean, Build in XCode.

About the iOS example app

This example app has Application supports iTunes file sharing property enabled in it’s plist file, which allows you to use iTunes to upload your 3D models to your device.

Once you have uploaded the 3D models, you can view the models as such.

Step 1

You can pick the model to view. You can also skip picking a model and navigate to
picking only a 3D skeletal animation.

[image: ../_images/iOS-app1.png]

Step 2

You can pick a 3D animation in this step. You can skip this step if you just want to view the 3D model selected in step 1.

[image: ../_images/iOS-app2.png]

Step 3

Based on your selection, you can view only the model, the skeletal animation or both.

[image: ../_images/iOS-app3.png]

About the macOS example app

This example app allows you to select the 3D model and animation files using the
file picker.

Step 1

You can pick the model to view. You can also skip picking a model and instead
pick only a 3D skeletal animation.

[image: ../_images/macOS-app1.png]

Step 2

You can pick a 3D animation in this step. You can skip this step if you just
want to view the 3D model selected in step 1.

[image: ../_images/macOS-app2.png]

Step 3

Based on your selection, you can view only the model, the skeletal animation or both.

[image: ../_images/macOS-app3.png]

FAQ

	Which are the file formats supported?

	See File formats supported.

	Why AssimpKit?

	See Why AssimpKit.

	What is the preferred use case for using AssimpKit?

	The preferred use case is when you are using SceneKit [https://developer.apple.com/reference/scenekit] and want to use
files that are not supported by SceneKit [https://developer.apple.com/reference/scenekit] or Model I/O [https://developer.apple.com/reference/modelio]. If your target
app is a real time app such as a game, it is recommended that you export the
scenes generated by AssimpKit into a native SceneKit archive and then use
these archives. See Using .scn archives exported from AssimpKit in your app.

	What are the known limitations?

	As of released version 1.0, there is no light support [https://github.com/dmsurti/AssimpKit/issues/46] at import time and
while Assimp [http://assimp.sourceforge.net/main_features_formats.html] supports 40+ file formats, AssimpKit currently supports 30
file formats.

Installation

This library has a simple 2 step installation process:

	Fork the repository [https://github.com/dmsurti/AssimpKit].

	Clone your forked repository.

Assimp Dependency

As AssimpKit depends on Assimp [https://github.com/assimp/assimp], AssimpKit ships with the static fat libraries
for both iOS and macOS platform. The xcodeproj is also configured for Assimp
dependency usage, so you only need to checkout and start editing!!!

The repository also contains assets which have their own licenses and are
meant to be used only for testing. Please refer to the License [https://github.com/dmsurti/AssimpKit/blob/master/LICENSE.md] and
Licenses [https://github.com/dmsurti/AssimpKit/tree/master/licenses] for more information.

XCode Project Layout

The XCode project is laid out such that the common cross platform code related
to reading using Assimp and transforming it to a Scene Kit scene graph is reused
for both the iOS and macOS platforms. The testing code is similary reused for
both the platforms.

[image: ../_images/xcode-layout.png]

Common Code

The common code, including both sources and tests, is placed under
Code/Model [https://github.com/dmsurti/AssimpKit/tree/master/Code/Model]. This common code is then used in 4 targets, 2 of which ship the
iOS and macOS frameworks while the other two are testing targets.

Targets

The project contains the following 4 targets.

AssimpKit-iOS

This target builds the AssimpKit.framework for the iOS platform using the common code.

AssimpKit-macOS

This target builds the AssimpKit.framework for the macOS platform using the
common code.

AssimpKitTests_iOS

This target tests the common code using the test assets [https://github.com/dmsurti/AssimpKit/tree/master/AssimpKit/assets] for the iOS platform.

AssimpKitTests_macOS

This target tests the common code using the test assets [https://github.com/dmsurti/AssimpKit/tree/master/AssimpKit/assets] for the macOS platform.

Example Apps

The library also contains 2 example apps iOS-Example.xcodeproj [https://github.com/dmsurti/AssimpKit/tree/master/AssimpKit/Library/iOS-Example] and
OSX-Example.xcodeproj [https://github.com/dmsurti/AssimpKit/tree/master/AssimpKit/Library/OSX-Example] which are configured for the AssimpKit.framework
depedency. You can read more about the Example Apps.

Changing Code

Any code change either for fixing a bug or adding a new feature, should ideally result in updates to the test code as well as example apps.

Design

The design of this library is based on the transformation of the Assimp scene
graph [http://assimp.sourceforge.net/lib_html/structai_scene.html] to a Scene Kit scene graph [https://developer.apple.com/reference/scenekit/scnscene].

Classes

The class diagram for the code in Code/Model [https://github.com/dmsurti/AssimpKit/tree/master/Code/Model] is shown below.

[image: ../_images/cd.JPG]
AssimpImporter [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/AssimpImporter.m] is the most important class which transforms the assimp scene
graph to the scene kit scene graph. It does the transformation by doing a depth
first traversal of the assimp scene graph and for each assimp node [http://assimp.sourceforge.net/lib_html/structai_node.html] visited,
it generates a scene kit node [https://developer.apple.com/reference/scenekit/scnnode].

SCNAssimpScene [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpScene.m] contains all the transformed data, excluding the animation
data, for which SCNAssimpAnimation [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpAnimation.m] is the container. The SCNAssimpScene [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpScene.m]
generates the model SCNScene [https://developer.apple.com/reference/scenekit/scnscene] and animation SCNScene [https://developer.apple.com/reference/scenekit/scnscene] instances. The
SCNNode+AssimpImport [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNNode%2BAssimpImport.m] category contains method to add the animation.

Generating the scene kit scene graph

The scene kit scene graph is generated in a 3 pass process:

	Pass 1: Generate the scene graph with geometry, materials and camera. In this
pass, we also collect the bone names if the aiMesh [http://assimp.sourceforge.net/lib_html/structai_mesh.html] has bones.

	Pass 2: This pass is executed only if the file has skeletal animation data, in
which case, we infer all the skeleton info so that we can make a SCNSkinner [https://developer.apple.com/reference/scenekit/scnskinner]
and then generate the animation data using CAAnimation [https://developer.apple.com/reference/quartzcore/caanimation] objects.

	Pass 3: Finally we transform the generated scene graph to a SCNScene [https://developer.apple.com/reference/scenekit/scnscene] and
each animation generated in pass 2 to SCNScene [https://developer.apple.com/reference/scenekit/scnscene]. This transformation is
important as it makes it easy to both serialize to native .scn format and
integrate into asset pipelines and/or applications.

Each pass is further described in detail next.

Pass 1: Generating the graph with geometry

Generating Geometry

The assimp node can contain mulitiple meshes where each mesh maps to the
SCNGeometryElement [https://developer.apple.com/reference/scenekit/scngeometryelement]. The importer generates a single SCNGeometrySource [https://developer.apple.com/reference/scenekit/scngeometrysource] for
each of vertex, normal and texture data for all the meshes in the nodes. Next it
generates separate SCNGeometryElement [https://developer.apple.com/reference/scenekit/scngeometryelement] for each mesh in the data, ensuring the
vertex indices are offset correctly for the combined geometry source.

A visual representation of this transformation is as shown.

[image: ../_images/geo-trans.JPG]

Generating Materials

As seen in the visual for geometry transformation, the importer now generates a
material for each mesh in the node. The material in assimp maps to
SCNMaterial [https://developer.apple.com/reference/scenekit/scnmaterial] in scene kit. The importer generates a image object for a texture
or a color object for a color if available for the following material
properties: diffuse, specular, ambient, reflective, opacity, normals, height,
displacement and light map. Both embedded and external textures are supported.
The material property in assimp maps to SCNMaterialProperty [https://developer.apple.com/reference/scenekit/scnmaterialproperty].

Generating Cameras

The camera in assimp maps to SCNCamera [https://developer.apple.com/reference/scenekit/scncamera] in scene kit. For an assimp node with
a camera, the importer generates a node with a camera which has xFov, zNear,
zFar configured.

Generating Lights

As of now the generation of lights has been disabled, due to a problem in serialization of light nodes in scene kit. See Issue #46 [https://github.com/dmsurti/AssimpKit/issues/46].

Pass 2: Generating Skeletal Animations

The skeletal animation data is generated in a 3 step process which consists of:

	Making a skeleton database

	Making a scene kit skinner

	Making the core animation objects

Making a skeleton database

The assimp scene graph does not contain a unique list of bones or the root of
the skeleton which have to be inferred from the assimp data structures.

[image: ../_images/assimp-sk2.png]
We parse the data structures above, so that we have a list of unique bone names,
bone nodes and the bone inverse transforms. Once the unique bone nodes is known,
the importer determines the root of the skeleton as that node which has the
lowest depth from the parent!

Making a skinner

In order to make a skinner, we also need the vertex weights data in addition to
the bone nodes and their inverse bind transforms which are available from
Making a skeleton database.

Assuming each vertex is influenced by 2 weights, the scene kit skinner data
layout is as such.

[image: ../_images/skinner2.JPG]
The importer first finds the number of vertices at the node and the maximum
weights. As a node may contain multiple meshes, the weights information is
generated for the combined meshes at that node and if a given
node has less weights than the maximum weights, zero weights are added for the
remaining weights.

In assimp, each mesh’s bones have vertex weights from which we have to calculate
the inverse data of which vertices are influenced by which bones.

When calculating the bone indices for the corresponding bone weights, we pass
the unique array of bone names which we will use when constructing the skinner
so that the bone indices are as per skinner’s bone indices layout. Again here,
we translate from the assimp bone name to the index in the array of bone names
generated when making the skeleton database.

If you combine the visuals of the assimp data structures and map them to the
SCNSkinner [https://developer.apple.com/reference/scenekit/scnskinner], and understand the skeletal animation concept of vertex
deformation using bone weights, then the above will be easier to understand.

Making the animations

The animation data is stored in aiAnimation [http://assimp.sourceforge.net/lib_html/structai_animation.html] as shown.

[image: ../_images/anim.JPG]
Each channel represents a bone and contains the keys for position, orientation
and scale. The position, orientation and scale keys are then converted into a
CAAnimation [https://developer.apple.com/reference/quartzcore/caanimation] object. Each position and scale key value is represented by a
SCNVector3 [https://developer.apple.com/reference/scenekit/scnvector3] while the orientation is represented by a SCNVector4 [https://developer.apple.com/reference/scenekit/scnvector4] which is a
quaternion. These core animation objects are stored in a dictionary keyed by
position, orientation, scale, along with a generated animation name, gives
us a SCNAssimpAnimation [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpAnimation.m] object.

If we have multiple animations in a file, we end up with multiple
SCNAssimpAnimation [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpAnimation.m] instances.

At the end of pass 2, we end up with SCNAssimpScene [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpScene.m] instance with
SCNAssimpAnimation [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpAnimation.m] objects if animation data exists.

Pass 3: Generating native SCNScene instances

The SCNAssimpScene [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpScene.m] instance is now transformed into a SCNScene [https://developer.apple.com/reference/scenekit/scnscene] instance.
Each SCNAssimpAnimation [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpAnimation.m] instance is transformed into a SCNScene [https://developer.apple.com/reference/scenekit/scnscene] instance.
By transforming these to SCNScene [https://developer.apple.com/reference/scenekit/scnscene] instances, both serialization and
integration into existing asset pipelines and/or applications becomes trivial.

Loading Animations

The SCNNode+AssimpImport [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNNode%2BAssimpImport.m] category defines a method to add the animation. As
all the animation data is just CAAnimation [https://developer.apple.com/reference/quartzcore/caanimation] objects, the animation SCNScene [https://developer.apple.com/reference/scenekit/scnscene]
graph is traversed and the core animation objects are added to the corresponding
bone node in the target scene or target nodes’ subtree.

Testing

The common test code place in Code/Library/Tests [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/Tests/SCNSceneTests.m] tests all the models in the
assets [https://github.com/dmsurti/AssimpKit/tree/master/AssimpKit/assets] directory filtered by all the File formats supported.

Each model is tested in AssimpImporterTests [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/Tests/AssimpImporterTests.m] for:

	Structure where each node in the scene kit graph has the same data as the
corresponding node in the assimp scene graph.

	The model and animation SCNScene’s generated by SCNAssimpScene [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/SCNAssimpScene.m] are
serializable to the native .scn format without any errors. The serialized
files are generated in a temporary test directory, which is deleted after the
test run.

There also exists a test SCNSceneTests [https://github.com/dmsurti/AssimpKit/blob/master/AssimpKit/Code/Model/Tests/SCNSceneTests.m] for testing the file formats supported.

Contributing

To contribute to AssimpKit:

	Please open an issue describing the bug, enhancement or any other improvement.

	If valid, please supply the sample model file that can help demonstrate the
issue.

	If the design involves a larger refactor, please open a issue to dicuss the refactor.

	After discussion on the issue, you can submit a Pull Request by forking this
project.

	Please accompany your Pull Request with updates to test code and example apps,
the latter may not be required for every change.

	Please ensure you format the code using clang-format [http://clang.llvm.org/docs/ClangFormat.html], there exists a
.clang-format config [https://github.com/dmsurti/AssimpKit/blob/master/.clang-format] for this project.

API

You can find the API Docs here [https://dmsurti.github.io/AssimpKit/appledocs/html/index.html].

Release Notes

Version 1.1

	Adds CAMediaTiming, animation attributes and SCNAnimatable like support.

Version 1.0

	Supports: geometry, materials, cameras and skeletal animations.

	Supports: serialization to native .scn format.

	Production Ready.

Index

 _images/xcode-layout.png
v [5 Library

not-supported-forma

|

PROJECT
valid-extensions.txt
Libr:
» [&] i0S-Example.xcodeproj (5 Library
TARGETS

13 @1 OSX-Example.xcodeproj
ASSmPpKit-i0S v oo o e 89 AssimpKit-i0S
» [17] AssimpKit-macOS 5 AssimpKit-macOS

» [7] AssimpKitTests_iOS S Emerfeh [""] AssimpKitTests_iOS

. ” shared from Code/
> : B I TR Hodel/Tests [_] AssimpKitTests_mac...
> Products

» [17] Frameworks

_static/ajax-loader.gif

_images/macOS-app2.png
L N 0SX-ObjC-Example

AT 8

Select Model Select Animation

Click to select
a 3D animation file

_images/macOS-app3.png
[XON OSX-ObjC-Example

Al @

Select Model Select Animation

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/iOS-app3.png
< Select Animation odel View

~

+ GEEEED Mt 60fps 5 44.93K
——

_images/kit.png
ASSIMPKIT PIPELINE

— ASSIMPKIT — v

Collada, FBX, OB]J SCENE KIT
and 26 more formats (.scn) files

_images/iOS-app1.png
Select Model

Serah.dae

Tap
skip to jump to

selecting_only an
animation for viewing

Serah2.dae

astroBoy_walk.dae
attack.dae

bat.dae
batsman/backfoot-drive.dae
batsman/bat-tap.dae

batsman/batsman-dive.dae

_images/iOS-app2.png
< Select Model

Serah.dae

Serah2.dae
astroBoy_walk.dae
attack.dae

bat.dae
batsman/backfoot-drive.dae
batsman/bat-tap.dae

batsman/batsman-dive.dae

Select Animation View Model

Tap view model to load
a model
without animation

Tap any file listed
here to play aniamtion

_images/macOS-app1.png
L N 0SX-ObjC-Example

Al @

Select Model Select Animation

Click to select
a 3D model file

nav.xhtml

 Table of Contents

 		
 Welcome to AssimpKit’s documentation!

 		
 AssimpKit at a glance

 		
 Introduction

 		
 Why AssimpKit

 		
 File formats supported

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Important Build Setting for iOS applications only

 		
 API Overview

 		
 Tutorial

 		
 Load a 3D model

 		
 Load a Scene which is a part of your app bundle

 		
 Load a scene by specifying a file URL

 		
 Load Skeletal Animations

 		
 Load an animation which is defined in the same file

 		
 Load an animation which is defined in a separate file

 		
 Managing Animations

 		
 Serialization and integrating with asset pipeline

 		
 Using .scn archives exported from AssimpKit in your app

 		
 Example Apps

 		
 Build Instructions for the example apps

 		
 About the iOS example app

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 About the macOS example app

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 FAQ

 		
 Installation

 		
 Assimp Dependency

 		
 XCode Project Layout

 		
 Common Code

 		
 Targets

 		
 AssimpKit-iOS

 		
 AssimpKit-macOS

 		
 AssimpKitTests_iOS

 		
 AssimpKitTests_macOS

 		
 Example Apps

 		
 Changing Code

 		
 Design

 		
 Classes

 		
 Generating the scene kit scene graph

 		
 Pass 1: Generating the graph with geometry

 		
 Generating Geometry

 		
 Generating Materials

 		
 Generating Cameras

 		
 Generating Lights

 		
 Pass 2: Generating Skeletal Animations

 		
 Making a skeleton database

 		
 Making a skinner

 		
 Making the animations

 		
 Pass 3: Generating native SCNScene instances

 		
 Loading Animations

 		
 Testing

 		
 Contributing

 		
 API

 		
 Release Notes

 		
 Version 1.1

 		
 Version 1.0

_images/bob-XCode.png
Bob.scn, Bob-1.scn
exported using
AssimpKit

Sphere added
in editor

_static/plus.png

_images/bob-iOS.png
The sphere
added in Xcode
Scene editor

+ @IS Mt 60fps *8 42.17K

_static/file.png

_images/assimp-sk2.png
Yourlist of bones _
Mesh
mVertices Bones Bone
mivame
| otetaric
mweights

The Indexinto this array.

7

iVertexWeight

[\mvertexid
weight
Your Vertex
{— Position
[Weight | Bone ID
Weight | Bone ID

_static/minus.png

_static/up-pressed.png

_static/up.png

